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ABSTRACT OF DISSERTATION

MULTIFREQUENCY RETRIEVAL OF CLOUD ICE

PARTICLE SIZE DISTRIBUTIONS

There are many sources of uncertainty in remote sensing retrievals. This is

particularly true where complex parameters such as liquid or ice hydrometeors must be

retrieved. Many of the uncertainties are the direct result of assumptions made in the

retrieval process to address the ill-posed nature of the inverse problem - namely that

there are more variables than measurements. In this paper, an optimal estimation retrieval

technique is applied to a multi-frequency data set from the Wakasa Bay AMSR-E

validation experiment. First, airborne radar observations at 13.4, 35.6 and 94.9 GHz are

integrated to retrieve all three parameters of a normalized gamma ice particle size

distribution (PSD), No*, p, and Di. This retrieved PSD was validated against the near-

simultaneous coincident in situ cloud probe observations. The differences between the

retrieved and in situ measured PSDs were explored through sensitivity analysis and the

sources of uncertainty were found to be the ice particle density and the aspect ratio of the

nonspherical particles modeled as oblate spheroids in the forward radiative transfer

model. The optimal estimation technique was then applied to retrieve an optimal density

and aspect ratio for the cloud under study through integration of the in situ and remote
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sensing observations. The optimal particle size-density relationship was found to be

p(D) = 0.07* D-"'58 and the oblate spheroid aspect ratio was found to be 0.53. The use of

these optimal values as improved assumptions in the PSD retrieval reduced the

uncertainty in the retrieved reflectivity of the three radars from +/- 6 dB to +/- 2 dB.

Next, the retrieval technique is expanded to include passive microwave observations and

retrieve a full atmospheric column vertical hydrometeor profile. Eleven airborne passive

microwave frequencies from 10.7 to 340 GHz are integrated with airborne radar

observations at 13.4, 35.6 and 94.9 GHz to retrieve all three parameters of a normalized

gamma ice particle size distribution (PSD): No*, ýt, and Din. The vertical profile retrieval

is validated against a clear sky scene before being applied to the horizontal extent of an

ice cloud. The PSD retrieval shows vertical structure consistent with cloud microphysical

processes. The default density and shape retrieval is used as a baseline for comparison

with the retrieval using the optimized model from the companion paper, which reveals an

order of magnitude difference in ice water path between the two retrievals. This

difference is explored and an information content analysis reveals that the optimized

model improves on the information content of the retrieval by 287 more states resolved

than the default model indicating a significant reduction in retrieval uncertainty.

Brian D. Griffith

Atmospheric Science Department

Colorado State University

Fort Collins, CO 80523

Fall 2005
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CHAPTER 1

INTRODUCTION

Clouds are a fundamental component of the water cycle in the atmosphere. They

dominate the planetary energy budget through cooling the earth by reflecting sunlight

back to space and warming the earth by absorbing and emitting thermal radiation. By

modulating the energy budget, clouds fundamentally alter the general atmospheric and

oceanic circulations.

Unfortunately, there are many sources of uncertainty in remote sensing retrievals.

Instruments, measurement techniques, and the physical models relating the measured

values to the parameters of interest and to each other all have intrinsic uncertainties.

Many of those uncertainties are the result of assumptions made in the retrieval process.

While these assumptions are necessary to solve the under-constrained retrieval problem,

they can affect not only the output uncertainty but also the character of the retrieved

solution itself.

Retrievals of cloud or rainfall parameters intrinsically have more free parameters

than are routinely observed. As a result, the largest retrieval uncertainty is generally not

in the observation (sensor noise) but in the forward model used for the inversion. These

forward model uncertainties are not well defined and little is known about them (AMSR

Rainfall Validation Implementation Strategy, 2001). Exploring and quantifying the
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assumptions in the forward model and the resulting uncertainty in the retrieval is thus

essential to developing confidence in remote sensing measurements.

State-of-the-art passive microwave retrievals of raining clouds use a Bayesian

scheme to match observed brightness temperatures against a database of cloud-resolving

model vertical profiles (Kummerow et al., 2001). However, there are more independent

variables than there are channels in the observing system. Thus, these schemes are unable

to determine the vertical structure of clouds and rainfall with vertical resolutions required

as inputs for many global climate models (L'Ecuyer and Stephens, 2002). Spaceborne

radars, as on the Tropical Rainfall Measuring Mission (TRMM) or CloudSat satellites,

have the capability to add vertical structure information to complement the passive

microwave retrieval.

Radars are able to return detailed information about the distribution of scattering

targets along the ray path. For vertically oriented radars, this means that a vertical profile

of hydrometeors can be retrieved. The power returned to the radar is a function of the

density, shape, phase, orientation and size of the target. Precise description of the particle

size distribution (PSD) is essential to relating the physical properties of individual

particles to the physical properties of the volume being observed (Viltard et al., 2000).

However, single-frequency spaceborne radars like the TRMM precipitation radar (PR) or

CloudSat radar must assume the PSD or find ancillary information to complete the

retrieval. Berg et al. (2002) found significant systematic regional biases between the

TRMM PR and the TRMM Microwave Imager (TMI) rainfall estimates. They asserted

that the biases stem directly from the assumptions needed to retrieve rainfall in the

fundamentally under-constrained framework in which each sensor must operate.
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Current research areas focusing on reducing the uncertainty in cloud and rainfall

retrievals address these underlying assumptions in different ways. One focus is to retrieve

vertical structure with radar while using a radiometric estimate of column water or ice as

a constraint. Frisch et al. (1998) used cloud radar and microwave radiometer

measurements to deduce cloud liquid water profiles. Austin and Stephens (2001)

described an algorithm for the detection of stratus clouds through a combination of radar

and visible optical depth using the optical depth information as a constraint on the radar

retrieval. A variation on this theme was introduced by Masunaga and Kummerow (2005)

where TRMM PR-retrieved PSDs were adjusted to better match TRMM TMI microwave

brightness temperatures. Despite advances in our ability to retrieve PSD parameters from

the combination of two sensors, these retrievals still require an assumption about PSD,

particle density, and particle shape, naming only the most important parameters, as there

remain more unknowns than observations.

Another thrust in combined active/passive hydrometeor retrieval research

involves developing more precise median representative PSDs sorted by scene or class

(e.g., convective or stratiform) for application directly into the forward model as an

improved assumption (L'Ecuyer et al., 2004). However, PSDs vary from storm to storm

and even within the same storm (Atlas et al., 1995). While such classes may be an

improvement, they still leave a fundamental uncertainty in the retrieval of instantaneous

vertical hydrometeor structure. The under-constrained nature of current retrieval

algorithms prevents an accurate measurement. In addition, the lack of realistic and

verifiable error estimates makes it impossible to validate the hydrometeor retrieval in a

physical sense.
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An algorithm for retrieving profiles from spaceborne radar that can be adapted to

any PSD was introduced by L'Ecuyer and Stephens (2002). This algorithm employs an

optimal estimation theory framework and is adaptable to multiple instrument

observations. In addition, it provides for a rigorous treatment of the uncertainties in the

retrieved profile with a full set of error diagnostics. This explicit treatment of profile

uncertainties is required for algorithm verification, model validation and data assimilation

applications (L'Ecuyer and Stephens, 2002). This optimal estimation algorithm will serve

as a template for incorporating an unprecedented number of simultaneous microwave

observations into the profile retrieval problem. Combining both remote sensing and in

situ observations through the optimal estimation framework enables identification of the

differences between observed and modeled brightness temperatures and radar

reflectivities. These differences represent the best knowledge of the inherent uncertainties

in forward modeling ability due to the underlying assumptions.

This dissertation will describe an optimal estimation algorithm that integrates

three sets of airborne radar observations, seven microwave radiometer channels, and in

situ cloud probe particle measurements to provide enough data to constrain the retrieval

of an ice cloud and retrieve all three parameters of a normalized gamma PSD: No*, ýL, and

DM.

Chapter two gives an overview of the Wakasa Bay experiment and details the

observational data collected and used in the retrieval. Chapter three explains the details of

the forward radiative transfer model used in the retrieval. Chapter four details optimal

estimation theory and its application to the retrieval. Chapter five explains the theory and
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application of information content analysis applied within an optimal estimation retrieval

framework.

Chapter six explores the results of a radar-only, single-level retrieval at the flight

level of the in situ instruments. The retrieval is validated against the in situ measurements

and the differences between these are explored through a sensitivity analysis. Particle

density and aspect ratio are selected as primary sources of uncertainty and optimal values

are retrieved. The PSD retrieval is performed using the optimal density aspect ratio and

again compared to the in situ measurements.

Chapter seven provides the results of the full vertical profile retrievals using the

previously retrieved optimal density and aspect ratio and comparisons with the baseline

model retrievals. The retrieval algorithm is validated against a clear sky scene and then

applied to the full horizontal extent of the ice cloud. The information content of the

retrieval is explored and a sensitivity analysis is performed.

Chapter eight is given to the discussion of both the single-level retrieval and its

validation against the in situ measurements as well as the impact of the optimally

retrieved density and aspect ratio as improved model assumptions. The improved model

is compared to the default density and particle shape model for not only the single-level

retrieval, but also the vertical profile retrieval. The vertical profiles are examined for

physical understanding of the retrieved ice cloud. Finally, the uncertainty and information

content of the retrievals are examined.

Chapter nine concludes the thesis with a look at both the single-level retrieval and

in situ validation as well as the vertical profile retrieval, with and without improved
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ssumptions and the broader implications of the results. The nature of the ice cloud

retrieval and uncertainty is discussed and a recommendation for future work is given.
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CHAPTER 2

WAKASA BAY EXPERIMENT

The Wakasa Bay field campaign was part of the Advanced Microwave Scanning

Radiometer (AMSR) Rainfall validation effort. As part of the physical validation effort,

the experiment in Wakasa Bay was designed to provide simultaneous observation of

clouds and precipitation by a comprehensive suite of active and passive microwave

remote sensors. Using a combination of 11 passive microwave frequencies from 10 to

340 GHz, a dual-frequency precipitation radar at 13.4 and 35.6 GHz and a cloud radar at

94.9 GHz, as well as simultaneous in situ data, the Wakasa Bay data set represents our

best ability to constrain the microwave inverse problem.

The AMSR-E Precipitation Validation Experiment was a joint United

States/Japanese experiment to validate the precipitation retrievals from the Advanced

Microwave Scanning Radiometer, a Japanese contribution to the Aqua satellite. The

National Aeronautics and Space Administration (NASA) contribution to the experiment

was the NASA P-3 aircraft with an instrument payload directed towards the sensing of

solid and liquid precipitation. The P-3 was based at Yakota AFB (near Tokyo) and was

dedicated to this experiment for most of January and early February 2003. The Japanese

AMSR validation team contributed a Gulfstream II aircraft with microwave radiometers

and an in situ cloud physics payload, two ground-based C-band Dual Polarized Doppler

7



radars (at Unami and Mikuni) and a large assortment of ground- and ship-based in situ

sensors. United States and Japanese scientists planned the individual flight missions

jointly. The goals of the AMSR-E precipitation team are summarized in Table 2.1.

Table 2.1. Goals of the AMSR-E precipitation team for the Wakasa Bay experiment.

1. To determine length scales of mid-latitude precipitation for beam-filling
corrections.

2. To validate freezing level retrievals.
3. To investigate radiative transfer in bright bands associated with stratiform

precipitation.
4. To test algorithms for the retrieval of snowfall over the ocean.
5. To test models for computing radiative transfer in precipitation.
6. To gather data for the development of retrieval algorithms for rain and snow fall

over land.
7. To test algorithms for the retrieval of Cloud Liquid Water Content.
8. To determine the variability of the surface emissivity at frequencies relevant to

precipitation retrievals
9. To test methods for measuring the rain drop size distribution remotely.
10. To obtain data for meteorological case studies.

In order to achieve the goals presented in Table 2.1, an extensive payload was

installed in the P-3 including:

1. Polarimetric Scanning Radiometer (PSR): a multi-frequency radiometer with

flexible scan patterns to simulate the AMSR-E and other measurement

geometries. The PSR has channels at 10.7, 18.7, 21.5, 37, and 89 GHz (Piepmeier

and Gasiewski, 1996).

2. Millimeter-wave Imaging Radiometer (MIR): cross-track, scanning radiometer

with channels at 89, 150, 220, and 340 GHz and three channels near 183.3 GHz

(Racette et al., 1996).
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3. Airborne second generation Precipitation Radar (APR-2): a cross-track, scanning,

Doppler radar with two frequencies at 13.405 and 35.605 GHz (Sadowy et al.,

2003).

4. Airborne Cloud Radar (ACR): a 94.9 GHz nadir-viewing (non-scanning) cloud

and precipitation radar (Sadowy et al., 1997).

The data collected on these flights, summarized in Table 2.2, addressed all of the

defined objectives. Rainfall of various intensities with freezing levels from about 3 km all

the way down to the surface and snowfall intensity varying from very light to very heavy

was observed over ocean. In many cases, satellite coverage from AMSR-E and TRMM

complements the airborne and surface-based observations. More detail on the sensors and

how to obtain the data can be found at: http://nsidc.org/data/amsr-validation/rainfall/.

Table 2.2. Summary of P-3 Flights in Wakasa Bay Experiment.

Flight Date Comments
Jan. 14, 2003 Sea of Japan, Rain/snow, low freezing levels
Jan. 15, 2003 Snow and a little rain over land (Northern Honshu)
Jan. 19, 2003 Oceanic rain, frontal crossing
Jan. 21, 2003 Oceanic rain
Jan. 23, 2003 Intense oceanic rain over Pacific
Jan. 26, 2003 Short flight over ground truth site at Fukui
Jan. 27, 2003 Joint with G-II, Sea of Japan, rain. Heavy rain over land on return
Jan. 28, 2003 Joint with G-II, Sea of Japan, snow, rain, snow over land
Jan. 29, 2003 Joint with G-II, Sea of Japan, snow over ocean and land
Jan. 30, 2003 Joint with G-II, Sea of Japan, snow over ocean and land
Feb. 1, 2003 Short flight over ground truth site at Fukui
Feb. 3, 2003 Scattered rain cells over Pacific Ocean

Dr. Masataka Murakami of the Japanese Meteorological Research Institute

provided data from the Gulfstream (G-II) aircraft flown as part of the Japanese

contribution to the Wakasa Bay experiment. Among the instruments flown on the

9



Japanese G-II aircraft were two-dimensional cloud (2DC) and two-dimensional

precipitation (2DP) particle measuring probes. These instruments image particles that

pass into the probe and record the size of the particles. The processed 2DC and 2DP data

include the flight information (position, altitude, temperature, pressure, etc.), sample

volume for each sample period, and particle concentrations per particle diameter bin.

The criteria for selecting a flight line for study was that it had both P-3 and G-II

data and that the PSR instrument was scanning in cross-track mode such that nadir

pointing data could be obtained from all instruments. After reviewing flights meeting

those criteria, a leg of the 27 January data was selected. This flight leg offered a mix of

rain, ice, cloud and clear air scenes and was thus well suited for testing the observations

and forward model under a variety of conditions. Figure 2.1 shows the synchronized

remote sensing data over the flight line selected for study.

To facilitate the use of observations from sensors with different sampling rates

and spatial resolution, each instrument's data was processed into a common grid. In

preparing the flight line, the raw data from each sensor were first synchronized by time.

Only nadir-pointing data were used for ease of comparison between instruments. The

radar data were filtered to remove ground clutter and then all data were interpolated into

a common spatial grid oriented along the direction of flight with 1 kim horizontal spacing

and 150 m vertical spacing. Figure 2.2 shows the gridded remote sensing data over the

flight line.

The stated uncertainties in the radars are +/- 1 dB at I 0-km range for the APR-2

and +/- 1 dB for the ACR. The stated sensitivity threshold for each radar at 6 km is 5 dB

for the APR-2 and -38 dBZ for the ACR. For the ice cloud retrieval performed here, the
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reflectivities are close to the sensitivity threshold of the APR-2 instrument. When

operating in this range, the APR-2 can suffer from quantization resulting in a nonlinear

uncertainty, which increases as the observed reflectivities get closer to the threshold.

Note that the gridded data in Figure 2.2 shows data dropouts that did not appear in

the raw data in Figure 2.1. The raw data files were plotted in consecutive scan order

synchronized by start and end times without regard to any missing data. Therefore, once

the raw data were gridded and processed, any time gaps in the data will now appear, as

evident in Figure 2.2.

The in situ data were matched against the selected P-3 flight line and interpolated

into the same horizontal grid as the remote sensing data. The G-II aircraft only offered

data at a single altitude for the ice cloud under investigation and the aircraft altitude was

used to place the in situ data into the corresponding vertical grid box. Note that the

spatially collocated in situ data are not concurrent in time with the remote sensing data.

There is a time lag (P-3 - G-II) of 317 to 348 seconds for each grid in the scene.

In modeling the size distribution of particles using the 2DP and 2DC probes, the

2DC probes have greater accuracy below 1000 ýtm and the 2DP probes have greater

accuracy above 1000 ptm. Heymsfield et al. (2002) state, for 2DC to 2DP PSD

combinations, it is appropriate to use the 2DC up to 1000 /am and the 2DP for particles

larger than 1000 ptm. Additionally, they note that 2DC probe counts are typically

underestimated below 100 /tm. Therefore, the particle size distribution for any point is a

combination of the 2DC and 2DP data with a step from 2DC to 2DP at 1000 ýLm.

However, there is a significant discrepancy between the PSD measured by the two

instruments as seen in Figure 2.3. The 2DC instrument counts 3-100 times the number

13



concentration of the 2DP instrument for any size bin in the ungridded data. Figure 2.4

shows the discrepancy of nearly a factor of 10 between the two instruments at the 1000

ýtm size bin. The 1000 ýtm bin is where the transition from one instrument to the other

takes place for building a combined 2DC - 2DP PSD. The impact of this uncertainty in

PSD is discussed in the sensitivity analysis section.

Ice Particle Size Distribution
10 1 .1 . . . . . I

100- +2DO
+2DP

E 10-1

S'10-2 .÷-
C O

(D

E 10-4 -

10-5 -,

10-
6  

I , l , ,1 1

10 100 1000 10000
Particle Size (/im)

Figure 2.3. In situ ice cloud particle size distribution as measured by 2DC and 2DP
probes. The PSD shown is a combination of 2DC and 2DP probes: 2DC probe
below 1000 ýtm and 2DP probe above 1000 ýtm. The plot represents the PSD
across the horizontal extent of the cloud from grid point 150-205.
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Figure 2.4. The in situ PSD number concentration around 1000 jtm. The top plot shows
the number concentration for each grid point across the cloud in the size bin
from 800 -1000 .tm and the bottom plot shows the number concentration in
the size bin from 1000-1250 [rm.
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CHAPTER 3

FORWARD RADIATIVE TRANSFER MODEL

Observed microwave radiances at the top of the atmosphere originate partly at the

surface and partly from the atmosphere. Radar reflectivities are solely the result of

scattering and absorbing constituents in the atmosphere. The surface contribution to

microwave radiances depends both on the nature of the surface and its temperature. The

atmospheric contribution to microwave radiances comes from constituents such as

oxygen, water vapor and cloud water both absorbing and emitting upwelling radiation.

Liquid precipitation drops absorb and scatter and cloud ice also acts to scatter upwelling

radiation. A full model of the radiative transfer through the atmosphere must include the

surface emission plus atmospheric emission and multiple scattering terms. The

emissivity, 8, of the ocean surface typically ranges between 0.4 and 0.6 and depends on

surface roughness, salinity and sea foam (Liou, 2002). The surface roughness for an

ocean surface is typically related to wind-driven waves and thus to near-surface wind

speed. An ocean surface emissivity model based on Wilheit (1979) is used to compute

emissivity as a function of wind speed and surface temperature.

Atmospheric absorbers of microwave radiation include water vapor, molecular

oxygen and cloud water. Water vapor and molecular oxygen provide the background
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atmospheric absorption. A representative pressure profile is used in this study to provide

the oxygen information. A column value for relative humidity and lapse rate yield the

background water vapor. Cloud water and ice are treated separately from this background

absorption and emission as part of a particle size distribution of hydrometeors.

The absorbing and scattering characteristics (extinction coefficient k, single

scatter albedo a, and the phase function P(O)) of the hydrometeors in the cloud volume

are calculated using Rayleigh, Mie and T-matrix theory. For a given size, temperature,

particle density and frequency of radiation, the complex index of refraction of the media

is calculated using Maxwell-Garett mixing theory (Maxwell-Garnett, 1904) as

generalized by Bohren and Battan (1982). Given the complex index of refraction and the

size parameter ( X= 7r* D%) of the particle, the scattering and absorbing characteristics

can be calculated. For smaller particles, the Rayleigh approximation may be made.

However, as particles get larger and approach a size parameter X - 1, the Rayleigh

approximation is no longer valid. Note that the failure of the Rayleigh condition depends

on both the frequency of the incident wave and the index of refraction of the scattering

media. From U laby (1981), the Rayleigh approximation may be applied where

In I*% < 0.5. Here n is the refractive index of the particle (the real part of the complex

index of refraction). For particles larger than this condition, Mie theory is used to

calculate the scattering and absorption properties of the hydrometeors.

Because cloud ice particles are typically aspherical, the forward model needs to

account for these particles as well. A T-matrix method was used to calculate the

scattering by nonspherical particles. The T-matrix code was obtained from Barber and

Hill (1990) for axi-symmetric oblate spheroids. Supplied with the size parameter of the
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particle (D = semi-major axis of spheroid), the axis ratio of the spheroid and the

orientation of the incident wave, the T-matrix code calculates the scattering

characteristics for a nonspherical particle.

The T-matrix nonspherical ice particles are oblate spheroids. These oblate

spheroids are preferentially oriented with their semi-major axis perpendicular to the

vertical. The cloud probe instruments return a PSD using the maximum dimension of the

imaged particle. This maximum dimension is assumed to be the length of the semi-major

axis of the T-matrix oblate spheroid. Thus the volume of an oblate spheroid with semi-

major axis = D and minor axis = D* 'b is less than the volume of a sphere with diameter

=D.

In the case of forward modeling in situ measurements of PSD, the model operates

explicitly on the measured number concentrations as a function of particle diameter. The

density of the ice particles is prescribed to yield the bulk ice mass characteristics.

However, a single constant density would be inappropriate as snow density decreases

with particle size (Heymsfield et al., 2004). The individual ice particle density-size

relationship from Brown and Francis (1995) is used to calculate the density as a function

of particle diameter (D) across the PSD,

p(g/cm3) ' 0.07D-' (3.1)

for D > 0.1 mm. Units of D are mm.

When an explicit in situ PSD is not present (i.e., for a retrieval of PSD

parameters) the model uses a normalized gamma distribution (Testud et al., 2001) to

represent the PSD. The normalized gamma distribution has several advantages over a

typical gamma PSD. A typical gamma PSD would be of the form
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N(D) = NoD'e-"D, (3.2)

where N(D) is the number concentration as a function of particle diameter D, N, is the

intercept, ýi is the order or shape of the gamma function and A is the slope of the

distribution. Here N, and X represent a mixture of the liquid water content (LWC), D,,

and the shape. This formulation proves problematic in PSD retrievals. No's dimension

itself (m-4-A) is ill defined and N, can be affected by variation correlated with variation in

ýL (Testud et al., 2001). This variation on N, with P, requires a priori restrictions on the

variance in R in order to enable retrieval convergence (Benedetti et al., 2003).

The normalized gamma distribution is of the form

D

where Dm is the mean volume diameter as defined by the fourth moment of the PSD

divided by the third moment,

fN(D)D4 dD

D,. =•0 (3.4)

f N(D)D3dD
0

N0 * is the normalized intercept

N4 N4D.' F(4 +.) 445)

0(4) (4 +)4+,(.

and F,(x) is the normalized shape of the PSD,

( F(4) (4+.)4+tt x, exp[-(4 + p)x]. (3.6)
44 F(4+ p)

The advantages of the normalized PSD are first that the three PSD parameters

now have physical meaning: Dm represents a characteristic particle size, NA* is the
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intercept parameter of an exponential distribution of the same LWC and Din, and • is the

shape of the PSD. Further, this normalization eliminates the strong variation in N, with 4t

without any a priori assumption on the shape of the PSD. This will prove essential to the

retrieval of PSD parameters.

Once the radiative properties of the surface and atmosphere are known, one can

apply radiative transfer techniques to compute the brightness temperatures or

backscattered radiation reaching the sensor. The forward radiative transfer model uses a

two-stream unscaled Eddington approximation for plane-parallel calculations. All

retrievals are made at nadir incidence and over water. Kummerow (1993) gives the

details of the Eddington approximation and shows it to be accurate to within 6 K for a

single uniform hydrometeor layer, within 3 K for more realistic multi-layered cloud

hydrometeor profiles and within 0.2 K in the absence of scattering constituents over the

range of frequencies from 6.6 - 183 GHz. Smith et al. (2002) showed the two-stream

Eddington approximation to normally be accurate within 1 K at nadir incidence over

ocean when compared to more complex 16-stream and Monte Carlo models. Roberti et

al. (1994) compared an Eddington plane-parallel code against 3-D Monte Carlo and

discrete ordinates methods at nadir incidence. They find that at lower emission-

dominated frequencies, errors introduced by the plane-parallel code are quite small. For

frequencies where scattering dominates (89 GHz and higher), the differences between

plane-parallel and more accurate 3-D methods can be significant and up to 8 K for high

ice content clouds (IWC = 5 gm-3) at 85.6 GHz and are an increasing function of

frequency (size parameter).
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The ice cloud under study has an ice water content of 1.0 x 10-3 to 1.0 x 1 0 A gm-3.

This range of ice water contents is far less than that in either the Roberti or Smith studies

and the characteristic size parameters of the particles should be much less as well. The

characteristic uncertainty in brightness temperatures due to scattering should

consequently be less than either Roberti or Smith found.

21



CHAPTER 4

OPTIMAL ESTIMATION METHODOLOGY

Atmospheric remote sensing involves the interpretation and inversion of

radiometric measurements, where the measured radiation is characterized by a specific

wavelength that is sensitive to some physical aspect of the medium (Liou, 2002). The

propagation of radiation through a medium is described by a radiative transfer model:

y = f(x) (4.1)

where y is a vector of dimension m representing the radiometric measurements or

observations, x is a vector of dimension n representing the state or physical aspects of the

medium through which the radiation has traveled and f is the forward function that maps

from state space to measurement space (Rodgers, 2000).

In this formulation, there is a single ideal measurement vector y corresponding to

the state vector x and determined by the physics of the measurement contained in f(x).

However, in practice, not only is there always measurement error, but also it is often

necessary to approximate the exact physics of the forward function by a forward model

F(x).

Thus, our relationship between observation vector and state vector becomes

y = F(x) + c, (4.2)
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where y is the measurement with uncertainty E and F(x) is a vector-valued function of the

state that contains our understanding of the physics. Note that F(x) is a model with its

own inherent uncertainty due to approximations of the underlying physics. These

approximations are required either due to a lack of knowledge of the physical processes

being modeled or in the interests of computational efficiency.

Now, consider a linearization of the forward model about some reference state x.,

y-F(x) dF(x) *(x-x.)+=K*(x - x,)+E, (4.3)dx

where K is the m x n weighting function matrix with elements

KY C, (x) (4.4)
AJ

K is also known as the Jacobian or kernel.

If the measurement space is modeled having dimension m and state space has

dimension n, then the act of measurement is equivalent to mapping from state space to

measurement space. K then represents that forward mapping while K-1 represents the

inverse, going from measurement space to state space.

For a linear problem, in the absence of measurement error or uncertainty, the

inverse problem reduces to the exact solution of the set of linear equations

y = Kx. (4.5)

However, all real measurements are subject to some experimental error or noise. One

way to describe the uncertainty around a measurement is to use a probability density

function in a Bayesian approach to probability.
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The statement that a scalar measurement has a value y and error a is a way of

saying our knowledge of the true value of the measured parameter is described by a

probability density function (PDF) P(y) with a mean value y and variance a 2 where

y= JyP(y)dy (4.6)

and

f J y)2P(y)d (4.7)

Here the probability that y lies in the interval (y, y + dy) is P(y)dy and that probability is a

measure of knowledge about y. The form of P(y) is often taken to be Gaussian:

p(y) exp{ (y y)} (4.8)
*7 22_2

When the measured quantity is a vector, a probability density can still be defined

over measurement space with the interpretation that P(y)dy is the probability that the true

value of the measurement lies in the multidimensional interval (y, y + dy) in

measurement space. Different elements of a vector may be correlated

S,1 =< (yi - y,)(yY - y) >t 0, (4.9)

where S0 is the covariance and < > is the expectation value operator. S is the matrix

consisting of all Sij and the diagonal of S consists of the variances, c2, of individual

elements of y.

The Gaussian PDF of a vector is then

P(Y)= 1 exp-(y_ Y)T S Y (Y-Y)}" (4.10)
(2; ')2  1S 122

Now that the measurement is written in terms of a PDF, how then does the inverse model

relate the state to the measurement? The act of measurement maps the state into
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measurement space according to the forward model. However, the measurement error e is

known only statistically so that a point in state space maps into a region in measurement

space given by the PDF of s.

There may also be some other prior information about the state, such as

climatology, which can be described by a PDF. This additional information can be used

to constrain the solution. Given a prior state PDF, Bayes theorem provides a way to

update the prior knowledge or expectation about the state in light of new information

from the measurement.

P(x) is defined as the prior PDF of the state x describing the probability before the

measurement that x lies in (x, x + dx). P(y) is the prior PDF of the measurement y. P(x,y)

is the joint prior PDF of x andy describing the probability that x is in (x, x + dx) andy is

in (y, y + dy). P(ylx) is the conditional PDF of y given x, i.e., the knowledge of y that

would be obtained if the state were x. It can be explicitly determined from the forward

model and the statistical description of the measurement error. P(xK) is the conditional

PDF of x given y and is the quantity of interest in the retrieval.

Bayes theorem can be written as

P(x I y) =P(yIX) * P(x) (4.11)

P(Y)

or the posterior PDF of the state x when the measurement y is given. This theorem

provides a conceptual approach to the inverse problem when the quantities of interest and

their uncertainties are described in statistical terms. Before any measurement, a priori

knowledge of the state is expressed as a prior PDF. Next, the measurement process is

described as a forward model mapping from state space to measurement space. Finally,
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Bayes Theorem provides a formalism for inverting the mapping function to calculate a

posterior PDF by updating the prior with new information from the measurement.

The simplest case to illustrate this process is a problem with a linear forward

model and Gaussian PDFs:

y =F(x)+E=K*x+s. (4.12)

Now write the posterior PDF in Gaussian format,

-2lnP(x I Y) = (x- i) T *Sj*(x- *X )+ c, (4.13)

and substitute into Bayes Theorem to solve for i,

i = x. + (KTSY-IK + S-')-1 * K TS-Y* (y- Kxa), (4.14)

where i is the expectation or mean value for the state and Sx is the associated error

covariance matrix,

S., = (KT SY-IK + Sa- 1)-'. (4.15)

Thus, the class of possible states consistent with the available information has been

identified with its associated PDF. Typically, however, the desired solution is a single

state accompanied by an estimate of uncertainty. Thus an objective method to select one

state from the PDF is required.

A common approach is to use the posterior PDF of the state vector and represent

the solution as the most likely state with the error covariance as the uncertainty. This

approach is called the maximum a posteriori (MAP) solution. Maximizing the posterior

PDF produces x as the most probable state and S, as the corresponding uncertainty.

Another approach is to minimize the variance, corresponding to least squares in the scalar

case. In the case of Gaussian PDFs, these two approaches are equivalent.

26



This analytical solution is applicable for the consideration of linear problems.

However, the radiative transfer problem is nonlinear. For moderately nonlinear problems,

since no general explicit expression can be found for locating an optimal solution, they

must be found numerically and iteratively using a Gauss-Newton method:

X1+1 = x1 + (S.- + KTSy-1Ky) * [KTSy-l(y- F(x ))- Sa(xi - x)]. (4.16)

The iteration stops when a convergence criterion is satisfied,

(xi -(xi - x «+i) << n (4.17)

where n is the number of degrees of freedom in the problem. This criterion is satisfied

when the difference between iterative steps is less than the uncertainty of the retrieved

state. The convergence or non-convergence of the retrieval is a first level diagnostic to

the validity of the inverse problem. An ill-posed problem will have a difficult time

reaching convergence with realistic input covariance. In addition to the convergence

criterion, there is a set of readily available diagnostic tools to evaluate the quality of the

retrieval.

The most obvious diagnostic tool is the retrieval covariance matrix S,. Combined

with the expectation (mean in our Gaussian case) state i, Sx describes the distribution of

possible retrieved states. The width of this PDF can be interpreted as the uncertainty

around the retrieved state. The diagonal elements of S, are the variances for each

retrieved parameter while the off-diagonal elements indicate correlations in uncertainties

between retrieved parameters.

The next diagnostic tool is the a priori matrix defined as

A = SKi TSy-1Ki. (4.18)
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A is the sensitivity of the retrieval to the true state, while (In - A) is the sensitivity of the

retrieval to the a priori (Rodgers, 2000). In an ideal inverse problem, A would be a unit

matrix, indicating that the retrieval is based exclusively on the measurements. Any

deviation away from unity for the diagonal elements of A indicates the contribution of the

a priori to the retrieved state.

A X 2 test can be applied to determine if the retrieval vector belongs to the

assumed Gaussian distribution. C 2 tests what fraction of members of the Gaussian

distribution has a probability density less than that of the vector being tested (Rodgers,

2000).

Z' = (IF(x) - y)F Sy-'(]F(x)- Y) + (X _ x.)T S.-'(x _ x.) (4.19)

compares the difference vector (F(x) - y) to a Gaussian distribution with zero mean and

covariance Sy and likewise the vector (x - xa) to a distribution with zero mean and

covariance Sa. X 2 should be approximately equal to the number of independent

parameters, n, in the retrieval. IfX 2 varies much from n, then either the retrieved vector

or the Gaussian distributions (covariance) may be suspect. IfX 2 is much greater than n,

then the retrieval vector is an outlier and this can indicate that the input covariance may

be underestimated, and thus the retrieved covariance would also be underestimated. Ify 2

is much less than n, the input covariance may be overestimated and the retrieval

covariance would be correspondingly too large.

Because the input covariance impacts not only the final retrieved state distribution

but also whether the retrieval can converge at all, proper estimation of the input

covariances is essential. However, there are few universally accepted methodologies for

estimating the error covariance matrices. The a priori error covariance matrix, S, is
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relatively straightforward. The a priori matrix should represent the knowledge of all

possible states before the measurement. If the a priori knowledge of a state is derived

from a source like climatology, then the climatology can be modeled as a PDF with a

most likely value and a variance. Providing a representative a priori PDF for each

parameter in the state vector produces a diagonal a priori covariance matrix.

Performing a similar process for each parameter in the measurement vector can

also provide a measurement covariance matrix, Sy. However, the Sy matrix represents the

uncertainty in the entire measurement process, not simply the measuring instrument's

accuracy. The measurement process has an overall uncertainty due to the accuracy and

resolution of the sensor, but the principal contribution to overall Sy is due to uncertainties

in the physical model used to map from measurement space into state space. Physical

limitations and assumptions in the forward model contribute to uncertainty in the

measurement.

These model uncertainties are more difficult to assess and thus include in Sy.

There are two principal approaches. The first approach is to test the sensitivity of the

retrieval to changes in the underlying assumptions. In the linear case this can provide an

estimate of the uncertainty due to the assumptions. In nonlinear cases, the sensitivity may

vary greatly depending on the range of the assumed value and any indicated sensitivity

may be accurate only around the immediate value tested. The second approach is to move

the parameter in question from assumption to retrieval parameter. By retrieving the

previously assumed parameter, one can treat the uncertainty around the unknown

explicitly.
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CHAPTER 5

INFORMATION CONTENT ANALYSIS

The optimal estimation methodology is particularly conducive to investigating the

information content of both measurements and retrieval. Information content is a measure

of how knowledge of the retrieval state is improved by the measurements. In the optimal

estimation sense the knowledge of a state is described by a PDF defined by some most

probable state or mean, and the variance around that state. The information content

describes the degree to which the prior PDF (set of all possible states before the

measurement) is reduced by the measurements. If the number of possible states is

reduced from the prior PDF with a relatively large variance or distribution width to a

posterior PDF with a smaller variance, then the measurements have added information.

Information content can be defined qualitatively as the factor by which the uncertainty

about a quantity is reduced by a measurement (Rodgers, 2000).

A common metric for the information content of a measurement (or set of

measurements) is the Shannon information content (SIC) as described by Rodgers (2000).

The SIC is an analog to thermodynamic entropy (S) which is the logarithm of the number

of distinct internal states of a thermodynamic system consistent with its thermodynamic

properties. The SIC is then the change in the logarithm of the number of distinct possible

internal states of the system being measured, consistent with the change in knowledge of

30



the system resulting from a measurement (Rodgers, 2000). Therefore, consider a prior

PDF, P1, describing the probability of any given state occurring in a system. P, represents

the a priori knowledge of a system before any measurements are made. If P2 represents

the probability distribution of states consistent with a measurement, then the difference in

entropy between P1 and P2 defines the information content of the measurement:

H = S(P) - S(P2 ). (5.1)

If PI and P 2 are Gaussian PDFs with variance cyl and Cy 2, then the entropy of P1 may be

written

1
S(P1) =log2 1 I+c (5.2)

2

where the constant c = m21og 2(2i'e) (L'Ecuyer et al., 2005). Then the SIC may be

written

H log 2  •C2' . (5.3)
2

Likewise, the optimal estimation definitions for the a priori and a posteriori PDFs is

described by

H =1llo2 1 S.S.-'(54H=lo2 I I.J (5.4)
2

Thus the information content measures the reduction in uncertainty in state space

from before the measurement (Sa) to after the measurement (S,). In information theory it

is convenient to use the base two logarithm so that the units of H are bits. H then

Hrepresents the number of distinct states, 2 , that can be distinguished from the prior state

space by the measurements (L'Ecuyer et al., 2005).
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H is a scalar comprised of matrices Sa and Sx, which itself is a product of Sa, K,

and Sy. In this formulation, H measures the information content of the combination of all

m components of the measurement vector y. However, it can be insightful to examine the

information content of a single component of y, such as a single radiometer frequency

brightness temperature, or a subset of y components, such as the set of returns from a

single radar frequency comprising a vertical reflectivity profile. For a single element yi,

Sxi will be written

S, = (S.-' + KiTSY-iK,)-'. (5.5)

Syi is a 1 x 1 matrix comprised of the variance for the single element yi. Ki is a 1 x n

matrix corresponding to the ith row of K. Thus, the product KiTS yi-Ki has dimensions

(n x 1). (1 x 1). (1 x n) = (n x n), and so Si retains the same dimensionality as S, but is

comprised solely of the contributions from the ith element of y. Using this Hy, the

information content of each individual measurement or set of measurements can be

calculated to assess which measurements contribute the most to the retrieval of each state

parameter. The information content towards each retrieved parameter can also be broken

out by the H for each element of Sa and S, individually.

Another measure of the information content of a retrieval is the effective rank of

the problem, or the number of independent measurements made to better than

measurement error. From Rodgers (2000) the effective rank, N, of the problem is

calculated as the number of singular vectors of Sy-Y2KSa Y that are greater than one. The

effective rank can be interpreted as the number of independent quantities that can be

retrieved from the measurements (L'Ecuyer et al., 2005).
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A similar information metric is the degrees of freedom for signal, ds, that

represents the number of useful independent observations in a measurement. The quantity

d, can be written as

d,- S'1'2 = tr(A) (5.6)
1+211

where 1i is a singular value of IK and k is the same quantity considered for N:

R = Sy-Y2KS.2. (5.7)

Note that d, and N are analogous, but d, applies in measurement space and N applies in

retrieval (state) space.

Together, these information metrics provide a quantitative evaluation of the

measurement and retrieval process. The degree of freedom for signal, ds, tells if

measurements are independent or redundant with respect to the retrieved state. Effective

rank, N, can determine how many independent quantities can be retrieved from the

measurements. The Shannon Information Content, H, provides a measure of how much

information about the state has been added or how much uncertainty has been reduced by

the measurements. H can also be broken into information contributions from individual

measurements or instruments or information about individual parameters to see which

instrument is most important to the retrieval and which parameter has the most

information.

As can be seen from Equations (5.4), (5.5), and (5.7), all of the information

content metrics depend on the a priori covariance S,. By defining the width of the prior

distribution of states, Sa is a measure of the uncertainty in the knowledge of the retrieval

state prior to the measurement. Since the information content is focused on the reduction
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of uncertainty from pre- to post-measurement, an error in the estimate of S" will be

directly propagated through to the evaluation of the information content of a

measurement or retrieval. If S, is too large, H will be overestimated and vice-versa.
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CHAPTER 6

SINGLE-LEVEL PSD RETRIEVAL

A retrieval of the PSD at a single vertical level was performed using the radar

data from the APR-2 and ACR instruments at the flight level of the G-II aircraft to

facilitate direct comparison with the 2DC probe measurements. The retrieval assumed a

Brown and Francis (1995) size-density relationship for the particles in the ice cloud being

retrieved. The particles were assumed to be spheres. The retrieved parameters were the

three variables in the normalized gamma distribution, ýt, No*, and Din, representing the

cloud ice PSD. Emission and attenuation were ignored as the forward radiative transfer

model considered only the scattering of the radar pulse from the single cloud volume at

the layer coincident with the in situ measurements. Attenuation by ice in the range of the

ice cloud under consideration is quite low, 0.2 dB/km at 94.9 GHz.

The retrieval obtained an optimal PSD for each individual grid point through the

length of the cloud. The mean cloud retrieved normalized gamma PSD was g, = -1.12, N)*

= 1.58 x 107 m', Dm= 2.2 x 10-3 m. Because the cloud was relatively homogeneous at the

flight level, a similar retrieval was performed that selected a single optimal gamma PSD

for the entire cloud instead of for each individual grid point. The all-grid retrieved

optimal PSD was 4 = -1.77, No* = 1.05 x 107 m', D, = 2.2 x 10-3 m. The single-grid

cloud mean and all-grid retrieved normalized gamma PSDs for the entire flight line were
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compared against the in situ measured PSD in Figure 6.1. The retrieved PSDs showed 10-

100 times more particles per size bin then the in situ PSD. The ice water content (IWC)

and Dm of the retrieved PSD were compared to the IWC and Dm of the in situ PSD in

Figure 6.2. The retrieved PSD shows up to 10 times more IWC than the in situ and the

retrieved particle mean volume diameters are much smaller than the in situ. These

discrepancies are significant.

Retrieved Ice Particle Size Distribution
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Figure 6.1. The retrieved PSD for the cloud using the default model assumptions of
spherical particles and a Brown and Francis particle size-density relationship.
The AG ret is the all-grid retrieval of a single optimal PSD for the entire
cloud. The SG ret is the mean of single-grid retrievals of optimal PSDs for
each gridpoint across the cloud. The retrieved PSDs are plotted over the in
situ PSD.
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Figure 6.2 The retrieved ice water content and mean volume diameters compared to the
in situ for each gridpoint across the cloud using the default assumptions of
spherical particles and a Brown and Francis size-density.

The radar reflectivity observations are related to the retrieved PSD through the

forward radiative transfer model. The differences between the radar retrieved PSD and

the in situ measured PSD may point to uncertainties in the forward model. The first step

to examine the relationship between the retrieved PSD and the in situ observations was

operating directly on the in situ measurements with the forward model and comparing

F(x) (forward modeled in situ) to y (radar observations). Using the default model

assumptions of spherical particles and a Brown and Francis size-density relationship, the

forward model operated on the in situ data to produce the F(x) at a grid point. Utilizing
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this procedure on successive grid points in the scene produced a flight line of F(x) that

can be compared to the remote sensing observations y.

There is a significant difference between the radar observations and the F(in situ)

shown in Figure 6.3 consistent with the differences shown in IWC and Dm in Figure 6.2.

There are several sources of uncertainty that may have contributed to this difference.
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Figure 6.3. Radar observations (y) compared to forward modeled in situ using the default
forward model assumptions of spherical particles and a Brown and Francis
size-density.

There is some uncertainty due to the discontinuity in number concentrations between the

two cloud probes and how they were combined to yield the in situ PSD. A sensitivity

analysis can be performed to determine the sensitivity of the forward model to

uncertainty in the in situ PSD. The in situ observations and the remote sensing
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observations are not synchronous in time; there was a time lag between the observations.

However, the five-minute lag between observations is not significant in the stratiform

cloud under study. In addition, comparing spatially averaged observations instead of

instantaneous single-grid values can minimize the effect of noise from the time lag

between the observations. Finally, the assumptions in the forward model included two

primary sources of uncertainty in the shape and density of the cloud ice particles. These

last uncertainties can be minimized by retrieving those parameters and thus treating their

associated uncertainties explicitly.

Sensitivity testing was performed to explore the effects of the PSD integration

between the 2DC and 2DP instruments. The forward modeled results of a representative

state (Mie spheres, Brown and Francis ice density) are shown in Table 6.1 for various

PSD combinations. PSD A used the accepted methodology of a step from 2DC to 2DP at

1000 ýtm, PSD B used a linear interpolation over the four size bins from 800-1750 ý.im,

and PSD C used a linear interpolation over the four size bins from 1000-2000 .tm. The

Table 6.1. Radar reflectivities in dBZ for a single-grid box using various 2DC - 2DP
interpolations compared to the gridded observations.

Freauency OBS 2DC 2DP PSD A PSD B PSD C
13.4 GHz 13.4 12.3 14.0 14.0 14.1 14.3
35.6 GHz 8.9 10.7 3.4 3.9 5.1 6.1
94.9 GHz 1.3 -1.3 -11.4 -6.0 -3.3 -2.4

uncertainty in PSD, especially on an individual grid point level, due to the integration of

the two instruments and the resulting uncertainty in the F(in situ) reflectivities is evident.

At 94.9 GHz, the reflectivity varies from -11.4 to -1.3 dBZ by selecting various

combinations of the PSD. The APR-2 frequencies showed lesser but still significant
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variance. The testing of distinct combinations of 2DP and 2DC PSDs could not produce a

satisfactory match of the F(in situ) to the radar observations.

One method to address the uncertainty from assumptions in the forward model is

to retrieve their values. Therefore, an optimal estimation framework was established to

'fit' the forward model to both the remote sensing observations (y) and the in situ

observations (here a given state), using the density-size relationship and aspect ratio of

oblate ice spheroids to investigate the differences between in situ and remote sensing

observations. The first retrieval parameter was the exponential factor in the ice particle

density-size relationship:

p(D) = 0.07* D-c' (6.1)

where D is the semi-major axis of an oblate spheroid. Thus the density relationship

returns the density of an ice particle with radius D/2 up to a maximum density equal to

the density of pristine ice at 0.917 kg m 3 . The second retrieval parameter is the aspect

ratio of an oblate spheroid in the T-matrix scattering code indicating the particle's

departure from sphericity.

Two retrieval approaches were available to examine the differences identified

between the remote sensing observations and the forward modeled in situ. The first

approach was to fit the observations at all-grid points simultaneously to find a single

overall optimal density and nonsphericity for the entire cloud. The second fits each

individual grid point with its own optimal density and aspect ratio.

The all-grid optimal estimation retrieves an optimal density parameter and aspect

ratio and respective uncertainties as shown in Table 6.2. The overall Y,2 of 109 for the all-

grid optimal parameters is much larger than the number of degrees of freedom (d, = 2)
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indicating that the instantaneous fit at each grid point is not particularly good. Due to the

non-synchronicity of the observations, however, a perfect instantaneous match is not

expected.

Table 6.2. Shows the retrieved parameters for a variety of difference retrieval methods,
the X2 fit of the retrieval and the RMS error y - F(x).

2 Rerea____ RMSRetrieval a/b X 13.4 35.6 94.9

B&F spheres 1.1 1.0 1451 6.0 7.8 11.7
All-Grid (AG) 1.58 0.53 109 2.9 2.1 2.1
Single-Grid 1.42 0.58 132 3.0 2.2 2.7
Mean (SGM)

The error covariance, Sy, was allowed to vary in order to explore what

observation error covariance was required to produce the best fit as evaluated by the X2

test for the retrieval. Sy = 15 dBZ was required to achieve X 2 - ds, as shown in Table 6.3.

This is significantly larger than the uncertainty in the radar reflectivities.

Table 6.3. Shows the variation in all-grid retrieved parameters and overall X 2 as a result
of relaxing the input Sy covariance.

SY xI X2 Z2

2dBZ 1.58 0.53 247
3 dBZ 1.58 0.53 109
5 dBZ 1.58 0.53 42
10 dBZ 1.56 0.54 12
15 dBZ 1.52 0.55 2

However, the mean reflectivities for the flight line indicated a better fit in the

mean sense, as shown in Table 6.4. The all-grid retrieval provided for a representative

density and shape for the cloud as a whole. But, the all-grid retrieval cannot capture any
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trends or changes in the underlying microphysical characteristics within the cloud. Note

also that the all-grid retrieval is over constrained, i.e., there are more observations than

there are free variables and the result is evident in the high x 2 value for the retrieval. The

variability in the instantaneous values of the all-grid F(x) in Figure 6.4 was the result of

variability in the in situ data and not of any attempt to match each individual grid point.

Table 6.4 Shows the cloud mean (average of all ice cloud grid points) observations and
retrieval f(x) at each radar frequency for a variety of retrieval methods. 1:
Brown and Francis spheres, 2: All-grid retrieval, 3: Single-grid mean retrieval,
4: Single-grid retrieval (allowing independent retrieval parameters at each grid
point).

Frequency[Mean Mean RMS
Freqenc MeanObs1 2 3 .4 1 2 3 4

13.4 GHz 11.9 6.6 11.6 11.9 12.0 6.0 2.9 3.0 0.5
35.6 GHz 8.3 0.8 8.4 7.9 8.0 7.8 2.1 2.2 0.7
94.9 GHz 2.3 -9.1 2.4 0.6 0.9 11.7 2.1 2.7 1.4

The second approach utilized a retrieval at each grid point individually, thus

attempting to fit the forward modeled F(x) to the remote sensing y at each point and

producing an individual density and aspect ratio for every grid point. This approach

allowed examination of state parameter differences through the length of the cloud and

may capture intra-cloud changes in the underlying microphysics.

The individual grid retrievals enabled remarkable matching of the retrieved

reflectivities to the observed reflectivities as seen in Figure 6.4. This was in direct

contrast to the all-grid retrieval where the variability in F(x) was driven by variability in

the in situ data. The forward modeled reflectivities now matched the maxima, minima,

and overall trend of the remote sensing observations. As a result, the root mean square
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(RMS) error between F(x) and y was reduced in comparison to the all-grid retrieval.

However, examination of the variability of the retrieved parameters across the flight line

indicated the retrieval was using the retrieved density as a 'tuning knob' to fit the curves

as evidenced by the unphysical variation in the density parameter across the cloud

(Figure 6.5). The maximum and minimum retrieved single-grid densities are shown in

Figure 6.6 and compared to the default Brown and Francis density and the all-grid

retrieved density.

1 3.4 GHz F(x) Comparison
20
15

N 10
m.u 5

-5

150 160 170 180 190 200
Grid

35.6 GHz F(x) Comparison
15
10

N 5

-U0

-5
-10

150 160 170 180 190 200
Grid

94.9 GHz F(x) Comparison
10
5

N 0

-0 -5
-10
-15 -_,_ _ _ __

150 160 170 180 190 200
Grid bf sg 9 Obs

Figure 6.4. Radar observations compared to forward modeled in situ using different
model assumptions. Obs represents the observed reflectivities. AG represents
a single all-grid optimal value of density parameter and aspect ratio. SG
represents the single-grid optimal values of density and aspect ratio for each
grid point. BF represents the default values of Brown and Francis density and
spherical particles.

Finally, although the 13.4 and 35.6 GHz F(x) matched the observations quite

well, there was a negative bias in the 94.9 GHz single-grid F(x) indicating that perhaps
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Figure 6.5. Plot of the optimally retrieved parameters for the single-grid retrieval
compared to the values of the all-grid retrieval. The constant lines across the
plot are the all-grid retrieved values while the lines that are variable across the
plot are the single-grid retrieved values.
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Figure 6.6. Retrieved size density relationships compared to the default Brown and
Francis size density relationship. B&F is Brown and Francis, AG ret is the all-
grid optimally retrieved density, SG max and SG min represent the maximum
and minimum retrieved densities for the single-grid optimal retrieval.
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the in situ measurements were not quite correct either in undercounting the small

particles or in the combination of the 2DC and 2DP data to create the overall PSD.

Exploring the sensitivity of the forward model to changes in the assumptions of

density and nonsphericity proved that these two parameters can account for the original

differences between the remote sensing observations and the forward modeled in situ.

Therefore, the PSD retrieval was repeated using the retrieved optimal density and aspect

ratio as improved assumptions in the forward model. Figure 6.7 shows the results of this

PSD retrieval. While no longer fully independent, the retrieved normalized gamma PSD

matches the in situ PSD quite well. The main deviation of the gamma PSD from the in

situ occurs at the smallest particles, where the retrieved PSD indicates a greater

concentration of small particles than is seen by the in situ 2D probes.

Retrieved Ice Particle Size Distribution w/ Optimal ca and a/b
1 0 1 .. . . I . . . . . I .. . .

+ In-situ
10 Improved

Original

E 0-1- ! - " -•.__

E +
IU 1

1:1
C:

U

E10-4-

z

:3

E10-5 -1 +5

10-6 __ _•

10 100 1000 10000
Porzicle Size (0m)

Figure 6.7. Improved assumption PSD retrieval compared to the in situ observed PSD.
The improved assumption retrieval incorporated the all-grid optimal values
for the density-size relationship and particle aspect ratio.

45



CHAPTER 7

VERTICAL PROFILE PSD RETRIEVAL

From the discussion of the radiative transfer model, the retrieval state for the clear

sky case considered the sea surface (or skin) temperature, surface wind speed,

temperature lapse rate, and a column value for relative humidity. In addition, the freezing

level was identified from the bright band in the radar data for the flight line and was fixed

at 1950 m. For the cloudy scene, the state vector adds the three components of the

normalized gamma PSD at every cloudy level. The base and top of the clouds are

determined by the presence of a valid 94.9-GHz echo in the lowest and highest vertical

levels. If there is no valid echo at 13.4 or 35.6 GHz at any level, the respective y value for

that level is set equal to the ACR reflectivity and is unweighted in the retrieval scheme by

setting its Sy to 10002.

The mechanics of the optimal estimation retrieval rely first on the specification of

the a priori xa, and the input error covariances Sa and Sy. The values for x, were

determined from the climatology of the Wakasa Bay area and from concurrent satellite

observations. For the clear sky case, x, = [285 K, 10 m s-1, 6 K km -', 50% RH].

Assignment of Sa in combination with xa just discussed produces the PDF describing the

knowledge of possible states for each parameter in the state vector where x, is the mean
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of the distribution and the diagonal elements of S, represent the width or variance (2) of

the distribution. For the clear sky case, the diagonal elements of Sa = [102 K, 102 m s-1,

52 K kin -', 402 % RH]. For example, the PDF of possible sea surface temperatures is

described by the Gaussian distribution represented by a mean of 285 K and a standard

deviation of 10 K. Sy represents the uncertainty around the measurement y in a similar

manner when the measurement is described by a PDF of possible states where y is the

mean value and Sy is the width of the measurement PDF. For the clear sky case (MIR

only) Sy is [32 32, 32, 32, 32, 52 72] where the Sy around the highest MIR frequencies

accounts for the greater instrument noise in those channels. For example, if the measured

89-GHz brightness temperature for a grid point is 220 K, then the measurement PDF is

described by a Gaussian distribution with mean 220 K and standard deviation 3 K. For

the cloudy case, Xa and S, must include values for the normalized gamma PSD

parameters, jt, No*, and D. For the PSD parameters, xa = [-1.0, 1.0 x 10', 1.0 x 10-]

from a general fit of a normalized gamma function to the distribution of in situ PSDs

found in the ice cloud as described in chapter six. To complete the PDF of possible states,

Sa must be defined for the PSD parameters. As for the background emission parameters

defined previously in the clear sky discussion, the diagonal of Sa is defined by a range of

possible parameters that provide gamma curves falling within the in situ PSDs. Se for the

PSD parameters is defined as [12, (1.0 x 108)2, (1.0 x 10.3)2]. But, in contrast to the

background emission parameters, Sa for the PSD is not defined as a diagonal matrix. A

correlation scale length between layers is defined to introduce a requirement that the PSD

vary smoothly between layers. From Rodgers (2000) a correlation constraint can be

defined as:
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S'j = U-a exp(-ýi- j h)(5 (7.1)

h

Where 8z is the vertical level spacing and h is the scale length for the parameter. For the

ice cloud under study 6z = 150 m and h was defined at 500 m.

The retrieval was first performed for the clear sky scene. The clear sky scene is

the simplest case for retrieval and provides a validation of the retrieval methodology and

the modeling of the background emission. The first attempt at clear sky retrieval failed to

converge to a solution. For the clear sky case there are no radar observations so the

retrieval uses only the MIR and PSR radiometer observations. The retrieval was next

performed using only the observations from the MIR sensor, and this time it successfully

converged to a solution state. The retrieval was then attempted using only the

observations from the PSR sensor and again failed to converge. The MIR and PSR share

the 89-GHz frequency and so the two instruments were compared to determine the

obstacle to retrieval convergence. The 89-GHz observations from both the MIR and PSR

are compared in Figure 7.1. There is a discrepancy between the PSR and the MIR

instrument, which share the 89-GHz frequency. The two instruments show the same

general features, e.g., one can visually match the traces by the features in the flight line.

However, the PSR shows a consistent cold bias relative to the MIR observations of up to

10 K in many places through the flight line.

An experiment was then performed to determine if the bias was only in the PSR

89 GHz or the other PSR channels as well. The MIR retrieved state was assumed as the

true state. Then the forward model operated on the assumed true state to produce

synthetic observations at the PSR frequencies, which would be consistent with the MIR

observations. The results for a sample individual grid point are shown in Table 7.1.
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Figure 7.1. MIR v. PSR 89 GHz raw brightness temperatures across the entire flight line.

Table 7.1 Bias between PSR observations and synthetic PSR TBs consistent with MIR
observations.

Instrument 10.7 GHz 18.7 GHz 21.5 GHz 37 GHz 89 GHz
PSR 130.5 K 143.9 K 167.5 K 171.5 K 209.7 K
F(xmIR) 118.0 K 135.3 K 154.5 K 161.3 K 214.4 K
Bias +12.5 K +8.6 K +13.0 K +10.2 K -4.7 K

Although the PSR 89 GHz showed a cold bias relative to the MIR, the other

frequencies of the PSR showed a warm bias relative to the synthetic PSR observations.

This internally inconsistent bias across the PSR frequencies could be the source of the

PSR-only retrieval's failure to converge. In order to test this possibility, the 89-GHz

observations were removed as inputs to the PSR-only retrieval. This time the retrieval

successfully converged to a solution, however the retrieved state was unreasonably warm,
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consistent with the bias in the first four PSR frequencies. The PSR retrieved state is

attempting to find warmer conditions than exist by increasing Tsfc, Vsfc, RH and

decreasing lapse rate. Table 7.2 shows the MIR retrieved state and the PSR (without 89

GHz) retrieved state.

Table 7.2. Comparison between MIR-only retrieved state and PSR-only (without 89
GHz) retrieved state.

Retrieval state Tf, (K) V,& (m s-1 LR (K km) RH (%
MIR 286.5 8.6 5.2 69.9
PSR 289.6 16.9 3.6 75.1

The physical consistency enforced through the optimal estimation methodology

identified instrument calibration issues that otherwise may have gone unnoticed. When

presented with a set of inconsistent observations the retrieval failed to converge. The PSR

calibration issues were identified to the PSR team and addressing this calibration is an

area of ongoing research. The decision was then made to exclude the PSR observations

from the retrieval and use only the MIR observations as the passive microwave input.

The MIR-only clear sky retrieval is shown in Table 7.3 along with the optimal

estimation and information content diagnostics. The retrieval values seem reasonable

when compared to the climatology and concurrent observations of the region. The

retrieved uncertainty is given by the standard deviation of the retrieved values. Recall that

the optimal estimation retrieval produces not a single retrieved value but a PDF of

retrieved possible states with the mean of the PDF as the retrieved value and the width of

the distribution as the uncertainty. The A-matrix output from the optimal estimation

method describes the contribution towards the retrieved state from the a priori and the

observations. An A-matrix value of zero indicates that the retrieval relied solely on the a
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priori to determine that retrieval parameter and an A-matrix value of one indicates the

retrieval parameter was determined completely by the observations. H, is the information

content for each retrieved parameter.

Table 7.3. Clear sky retrieved state with optimal estimation and information content
diagnostics: T is the standard deviation of the retrieved parameters, A is the
A-matrix values from 0 to 1, H, is the individual parameter Shannon
Information Content.

Tf M_ Vsfc (m S1) LR (K kim-) RH (%)

Retrieved 286.5 8.6 5.2 69.9
a 7.7 5.6 1.2 16
A 0.41 0.68 0.94 0.85
H, 0.39 0.83 2.1 1.4

Once the retrieval methodology had been validated during the clear sky retrieval,

the ice cloud could be considered. The extent of the cloud was entirely above the freezing

level and thus showed no sign of the bright band evident in other areas of the flight line.

The pilot of the P-3 aircraft gathering the data reported no icing during this flight

indicating the absence of supercooled water. Therefore, the retrieval assumed there was

no supercooled water in the cloud and retrieved a PSD for cloud ice particles only.

Using the default model assumptions of ice spheres and a Brown and Francis size-

density relationship, the retrieval was applied to the ice cloud scene. Retrieving for each

grid point through the extent of the cloud from grid points 150 to 205 produced the

background emission state parameters plus a vertical profile of PSDs for each grid point.

Figure 7.2 shows the composite of vertical profiles of retrieved PSD parameters along

with the cloud mean vertical profile for each parameter. Also shown in Figure 7.2 are the

composite and cloud mean vertical profiles of retrieved ice water content. A
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representative grid point retrieval for grid point 201 is shown in Table 7.4 for the

emission parameters and the retrieved PSD parameters are shown in Tables 7.5.

Default Retrieved PSD Parameters
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Figure 7.2. Default model (Brown and Francis ice size-density relationship and spherical
particles) retrieved normalized gamma PSD profiles for the ice cloud from
grid point 150 to 205.

Table 7.4. Default model retrieved emission parameters with uncertainties and A-matrix
diagnostics.

Tsf_ _ (K) V, (m s-1) LR (K km RH
Mean 284.2 11.6 7.1 68
a 7.8 5.9 1.3 23
A 0.39 0.66 0.93 0.67
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Table 7.5. Default model retrieved PSD parameters, uncertainties and optimal estimation
diagnostics.

Layer *t No" Dm___ N,* aD,., A A No" A Dm

Top -1.1 4.25E7 4.93E-4 .99 9.6E7 2.6E-4 0.00 0.00 1.0
16 -1.2 5.83E7 8.26E-4 .99 9.2E7 3.7E-4 0.00 0.02 0.98
15 -1.2 7.84E7 1.15E-3 .98 8.6E7 4.2E-4 0.01 0.05 0.96
14 -1.3 1.00E8 9.72E-4 .97 7.8E7 1.8E-4 0.02 0.17 1.0
13 -1.4 9.25E7 1.08E-3 .95 7.0E7 2.OE-4 0.02 0.20 0.99
12 -1.6 7.56E7 1.17E-3 .94 6.2E7 2.3E-4 0.02 0.25 0.99
11 -1.8 4.60E7 1.33E-3 .92 4.7E7 3.3E-4 0.03 0.44 0.97
10 -2.0 6.58E6 2.32E-3 .88 8.4E6 7.9E-4 0.08 0.98 0.80
9 -2.0 2.17E6 2.98E-3 .85 2.8E6 1.1E-3 0.13 1.0 0.68
8 -2.0 9.86E5 3.43E-3 .83 1.3E6 1.2E-3 0.17 1.0 0.60
7 -1.8 4.85E5 3.70E-3 .84 5.8E5 1.3E-3 0.19 1.0 0.57
6 -1.6 5.81E6 3.1OE-3 .91 7.0E5 1.OE-3 0.03 1.0 0.72
5 -1.4 1.10E6 2.44E-3 .95 1.3E6 7.4E-4 0.00 1.0 0.83
4 -1.3 2.33E6 1.93E-3 .98 2.7E6 5.8E-4 0.00 1.0 0.89
3 -1.2 2.67E6 1.85E-3 .99 3.2E6 5.6E-4 0.00 1.0 0.93
2 -1.2 1.60E6 1.63E-3 .99 5.7E6 2.1E-3 0.00 0.99 0.01
Base -1.1 7.32E5 1.46E-3 1.0 3.7E6 2.5E-3 0.00 1.0 0.00

The X 2 for the default model retrieval for grid point 201 was 13.6. X2 evaluates the

'goodness' of fit when compared to the number of independent parameters in the

retrieval. If X2 is much greater than n, then the input covariance may be underestimated

and the retrieved covariance would also be underestimated. If 2 is much less than n, then

the input covariances may be overestimated and the retrieved covariance would also be

overestimated.

The number of independent parameters (n) required for comparison with x2 Can

be estimated in different ways. The total number of retrieved parameters is three PSD

parameters per cloud layer plus the four background parameters, which in this 17-layer

grid point equals 55. However, the effective rank was calculated through an information

content analysis to be N = 28. This indicates that not every retrieved parameter is
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2 Y~2

independent and )2 would be better compared against n = 28. In this case, yj 13.6 is on

the same order as n = 28, thus indicating a relatively good fit.

An information content analysis was performed on the default model retrieved

grid point. The results of the information content analysis were: effective rank (N) = 28,

degrees of freedom for signal (d,) = 27.4, and the Shannon Information Content (H) =

123.6. As discussed in the previous paragraph, the effective rank represents the number

of independent retrieved parameters, where N less than the total number of retrieved

parameters indicates that not every retrieved parameter is independent. Similarly, the

degrees of freedom for signal (d,) = 27.4 represents the number of independent

measurements. This can be compared to the total number of measurements, 27.4 < 58,

indicating that not all of the measurements are independent. The Shannon Information

Content represents the reduction in uncertainty from the a priori state to the retrieved

state as a result of the measurement. H = 123.6 means that 21236 (1.6 x 1037) total possible

states can be determined by the measurements out of the a priori state space.

In addition, the information content for each individual parameter was computed.

The Hx, or information about each parameter is H, = [0.361, 0.772, 1.95, 0.798] for the

Tsfc, Vsfc, LR, and RH parameters. Not much information about the surface emission

parameters is available from the measurements. This result is expected with the loss of

the lower frequency PSR data; the higher frequencies of the MIR instrument are not as

sensitive to changes in the surface emission. The lapse rate parameter shows the most

information content as would be expected for its impact on the distribution of upper level

moisture, to which the MIR observations are sensitive. The H, for the PSD components

contributes most to the total information content as shown in Table 7.6.
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Table 7.6. Shannon Information Content (H) and individual parameter information
content (HI) for the default model retrieval.

Level H (0) H, (No) Hx (D.) H
Top 0.00947 0.0621 3.53 3.60
16 0.0173 0.116 3.03 3.16
15 0.0309 0.209 2.83 3.07
14 0.0500 0.366 4.06 4.47
13 0.0689 0.506 3.91 4.48
12 0.0915 0.688 3.69 4.46
11 0.126 1.08 3.17 4.38
10 0.185 3.57 1.93 5.69
9 0.242 5.16 1.49 6.89
8 0.270 6.32 1.27 7.86
7 0.246 7.44 1.24 8.93
6 0.133 7.16 1.57 8.87
5 0.0686 6.31 2.02 8.40
4 0.0361 5.20 2.37 7.61
3 0.0197 4.98 2.42 7.42
2 0.0108 4.12 0.549 4.68
Base 0.00588 4.75 0.250 5.01

Next the ice cloud retrieval was performed for the same subset of grid points

using the optimal assumption model. The optimal model used the optimally derived size-

density relationship and oblate spheroid aspect ratio derived in chapter six as improved

assumptions in the forward radiative transfer model. Figure 7.3 shows the composite of

retrieved profiles plus the cloud mean profile for each parameter. In addition the

composite and cloud mean ice water content profiles are shown.

The optimal retrieval at a representative grid point shown in Table 7.7 may be

compared to the previous default retrieval at the same grid point in Table 7.4. The

retrieved emission state parameters are almost identical. However, the optimal retrieval

of vertical PSD profiles is significantly different than the default retrieval shown in Table

7.5. Table 7.8 shows the optimal retrieval of PSD parameters for grid point 201.
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Optimal Retrieved PSD Parameters
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Figure 7.3. Optimal model (optimal ice size-density and oblate spheroid aspect ratio from
Part One) retrieval of normalized gamma PSD profiles for the ice cloud from
grid point 150 to 205.

Table 7.7. Optimal model retrieved emission parameters with uncertainties and A-matrix
diagnostics.

T ,f, (K) Vsfc (m s-) LR (K -1 RH %
Mean 284.6 11.9 7.1 67.2
CY 7.8 5.8 1.3 23

A 0.39 0.67 0.93 0.66
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Table 7.8. Optimal model retrieved PSD parameters, uncertainties and optimal estimation
diagnostics.

Layer t No0  D,. CY (Y No* a Dm A t A N," A Dm

Top. -1.5 5.68E4 1.38E-3 .96 3.2E5 2.7E-3 0.00 1.0 0.00
16 -1.7 4.50E5 1.51E-3 .93 2.1E6 2.5E-3 0.00 1.0 0.00
15 -1.9 1.46E6 1.70E-3 .88 5.1E6 2.OE-3 0.03 0.99 0.02
14 -2.3 7.91E5 2.03E-3 .79 9.7E5 6.4E-4 0.15 1.0 0.93
13 -2.4 2.86E5 2.94E-3 .72 4.0E5 1.1E-3 0.24 1.0 0.64
12 -2.4 2.86E5 2.94E-3 .69 3.0E5 1.4E-3 0.26 1.0 0.55
11 -2.2 1.21E5 3.95E-3 .67 1.7E5 1.6E-3 0.29 1.0 0.46
10 -1.8 7.46E4 5.08E-3 .64 9.1E4 1.9E-3 0.38 1.0 0.31
9 -1.5 4.99E4 5.60E-3 .64 5.6E4 2.OE-3 0.38 1.0 0.30
8 -1.3 3.64E4 5.80E-3 .65 3.9E4 2.OE-3 0.38 1.0 0.31
7 -1.0 2.54E4 5.74E-3 .70 2.6E4 1.9E-3 0.36 1.0 0.35
6 -0.9 2.43E4 4.99E-3 .80 2.7E4 1.7E-3 0.20 1.0 0.46
5 -0.9 3.30E4 4.15E-3 .88 3.8E4 1.4E-3 0.10 1.0 0.62
4 -0.9 4.93E4 3.46E-3 .93 5.5E4 1.1E-3 0.04 1.0 0.76
3 -0.9 5.78E4 3.28E-3 .96 6.4E4 1.OE-3 0.04 1.0 0.83
2 -0.9 3.411E4 2.69E-3 .98 5.9E4 2.1E-3 0.00 1.0 0.00
Base -0.9 1.64E4 2.25E-3 .99 4.1E4 2.6E-3 0.00 1.0 0.00

The X2 for the optimal retrieval was 14.3, very close to the ,2 of the default

retrieval at this grid point. An information content analysis was performed for the optimal

retrieval. The results of the information content analysis were: effective rank (N) = 29,

degrees of freedom for signal (ds) = 29.0, and the Shannon Information Content (H) =

210.9. While the degrees of freedom showed a slight increase, the information content

increased dramatically indicating significantly reduced uncertainty in the retrieval state.

The increase in H means that 287.3 (1.9 x 1026) more states can be resolved by the optimal

retrieval than the default retrieval. In addition the information content for each individual

parameter was computed. The Hx, or information about each parameter is H,- = [0.359,

0.797, 1.94, 0.778] for the Tsf,, Vsfc, LR, and RH parameters. These results were quite

similar to the default retrieval, indicating again that most of the information in the

57



observations is going toward the PSD component retrieval. The H, for the PSD

components is shown in Table 7.9.

Table 7.9. Shannon Information Content (H) and individual parameter information
content (H,) for the optimal model retrieval.

Level H. (p) H. (N.) H. (Din) H

Top 0.0537 8.27 0.130 8A45
16 0.101 5.54 0.256 5.90
15 0.189 4.30 0.554 5.04
14 0.343 6.69 2.24 9.27
13 0.472 7.98 1.41 9.85
12 0.531 8.37 1.10 10.0
11 0.581 9.18 0.869 10.6
10 0.652 10.1 0.650 11.4
9 0.655 10.8 0.576 12.0
8 0.611 11.3 0.578 12.5
7 0.514 11.9 0.642 13.1
6 0.328 11.8 0.813 13.0
5 0.190 11.4 1.12 12.7
4 0.102 10.8 1.48 12.4
3 0.0654 10.6 1.58 12.3
2 0.0352 10.7 0.483 11.2
Base 0.0191 11.2 0.225 11.5

The information content can also be examined for the contributions from

individual elements of y, such as a single frequency, or sets of y elements, such as the

information content from the MIR instrument. Table 7.10 shows the information content

for the grid point 201 retrieval from different subsets of y. One intuitive result is that the

radar observations provide no information about the surface emission parameters Tsf, and

Vsfc. This does not imply that radars have no useful information about Tsr, or Vsf,, only

that the surface cross-section was not used in this study and that the reflectivity from the

cloud volume provides no information about the surface. Another intuitive result is that

the radar observations provide most of the information about the vertical distribution of
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Table 7.10. Optimal retrieval observation subset information content for grid point 201.
PSD parameters are mid-cloud.

Y subset H H(Tsfr) H(Vsrc) H(LR) H(RH) H(g) H(No0 ) H(Dm)
All obs 211 0.359 0.797 1.94 0.778 0.655 10.8 0.576

MIR 23.1 0.0459 0.452 0.931 0.433 5.26E-5 1.45 4.30E-5

All radar 205 0.0 0,0 1.3 1E-3 4.40E-6 0.646 10.8 0.571

94.9 182 0.0 0.0 1.65E-8 5.28E-10 2.13E-7 10.5 1.88E-4

GHz
13.4 141 0.0 0.0 6.04E-10 1.83E-13 4.25E-8 10.0 2.05E-4

GHz
35.6 106 0.0 0.0 8.86E-11 5.1OE-12 1.70E-7 10.5 1.1OE-4

GHz I

hydrometeors through the PSD retrieval. The ACR radar at 94.9 GHz provides more

information about the cloud ice PSD parameters than the lower frequency radars as

would be expected. The APR-2 frequencies do provide significant information about the

PSD parameters; however, it appears that the information content from each instrument is

somewhat redundant as the total information content for the PSD parameters is not the

additive result of each radar's contribution. For example, in the center of the cloud the

total H for No* for all radars is 10.79, while the three individual radars have H of 10.47,

10.00, and 10.45. The same analysis of information content for the default retrieval

(Table 7.11) reveals that the total all-radar H for No* at the center of the cloud is 5.15,

while the three individual radars have contribute H of 4.28, 3.62, and 3.96. In contrast to

the No* H, the H for ., and D,, appears to be synergistic. Total gt H for all three radars is

0.646 while the individual contributions are 2.13 x 107, 4.25 x 108, and 1.70 x 10-7.

Likewise, total D,, H for all three radars is 0.571 while the individual contributions are

only 1.88 x 1 0 4, 2.05 x 104 , and 1.10 x 10-4.
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Table 7.11. Default retrieval observation subset information content for grid point 201.
PSD parameters are mid-cloud.

Y subset H H(Tsfr) H(Vsfc) H(LR) H(RH) HMU) H(No* H(Dm)

All obs 124 0.360 0.772 1.95 0.798 0,242 5.16 1.49
MIR 9.56 0.222 0.681 1.89 0.760 2.06E-3 0.472 0.0661
All radar 118 0.0 0.0 2.16E-3 1.21E-5 0.232 5.15 1.49
94.9 GHz 95.9 0.0 0.0 5.88E-6 4.21E-8 7.63E-5 4.28 0.236
13.4GHz 71.1 0.0 0.0 1.68E-7 2.74E-11 1.09E-5 3.62 0.256
35.6 GHz 44.0 0.0 0.0 4.07E-8 6.91E-10 4.79E-5 3.96 0.247

A sensitivity analysis was performed to examine the robustness of the retrieval

results. Using the retrieved IWP as an indicator of the overall retrieved state for a grid

point, input values were perturbed for grid point 201 and the results are shown in Table

7.12. First the impact of changing the a priori state was explored. The retrieval was

essentially unaffected by reducing the apriori emission state PDF by half as all changes

were well within the retrieval uncertainties. The next perturbation was to reduce the PSD

Table 7.12. Sensitivity of retrieval to changes in the a priori state and observations. IWC
is at mid-cloud level. Perturbations: a. Cut S. for the emission parameters by
half; b. Cut S. for PSD parameters by half; c. Change Xa ýt from -1.0 to -1.5;
d. Change Xa No* from 1.0 x 106 to 1.0 x 105; e. Change Xa Dm from 1.0 x 10.'
to 1.0 x 10-4; f. Perturb 94.9 GHz +1 dBZ at every cloud level; g. Perturb
13.4 GHz +1 dBZ; h. Perturb 35.6 GHz +1 dBZ.

Change Tsf_ Vfc LR RH IWP IWC
Baseline 284.6 11.9 7.1 67.2 0.521E-2 0.242E-5
a. 284.7 12.6 7.0 62.9 0.523E-2 0.244E-5
b. 284.7 11.4 6.7 70.9 0.593E-2 0.361E-5
c. 284.9 12.1 7.1 66.5 0.541E-2 0.224E-5
d. 284.6 11.9 7.1 67.2 0.523E-2 0.243E-5
e. 284.6 11.9 7.1 67.2 0.515E-2 0.244E-5
f. 285.5 12.6 7.1 65.4 0.638E-2 0.278E-5
g. 284.8 11.8 7.1 67.4 0.517E-2 0.232E-5
h. 284.3 11.6 7.0 68.0 0.504E-2 0.261E-5
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parameters S. by half. This again made only small changes to the surface emission

parameters and made a slightly larger change in the retrieved IWP. This was the largest

change evidenced in the changing of the a priori state. Further exploration by perturbing

x, mean values (p from -1.5 to -1., No* from 1.0 x 106 to 1.0 x 105, and Dm from 1.0 x 10-3

to 1.0 x 1 0 4) yielded only slight deviations in the retrieved parameters.

Next the observations were perturbed by incrementing the reflectivities for each

radar by +1 dBZ in turn, at every level in the cloud. Increasing the ACR 94.9-GHz

reflectivity at every level in the cloud produced the greatest change in the retrieval

results, a 20% increase in IWP. This is still within the retrieved IWP uncertainty. Also

note the increase in Tsfc and VsfC to compensate for the increased ice scattering in the

profile while remaining true to the radiometer observations. Incrementing the other radar

frequencies produced less minimal disturbance in the retrieval. Overall the retrieval

results are quite robust to changes in both the a priori and are also stable to small changes

in the observations.
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CHAPTER 8

DISCUSSION

8.1 Single-Level PSD Retrieval

The initial optimal single-level retrievals of cloud ice PSDs showed significant

differences from the in situ cloud probe measured PSDs. Retrieved number

concentrations of particles showed 100 times more particles than the in situ. The resulting

IWC was up to 10 times larger than the in situ while the retrieved Dm was smaller then

the in situ Dm by half. The remote sensing observations, the forward radiative transfer

model or the in situ observations contained errors.

Exploring the differences between in situ and retrieved PSDs by forward

modeling the in situ proved illuminating. The large negative bias in the F(x) relative to

the observations, shown in Figure 6.4, indicated that one or more of the forward model

assumptions were incorrect. In this case, sensitivity testing indicated that the ice particles

in this particular cloud were not Brown and Francis density spheres. Allowing the

assumed size-density relationship and the aspect ratio of the ice particles to vary as

retrieved parameters was able to reconcile the differences between remote sensing and in

situ observations. Retrieving an optimal density and nonsphericity for the particles not

only brought the F(in situ) in line with the remote sensing observations, but also
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impacted the retrieved ice water content (Figure 8.1) where the default spheres have 2-5

times the IWC of the optimally retrieved spheroids despite the negative F(in situ) bias in

the reflectivity of the default spheres.

Retrieved IWC
0.04

0.03
E

0.02

- 0.01

150 160 170 180 190 200
Grid

Retrieved Dm
5000- Og•

4500 S9
E __ B & F

S4000

E

3500

3 0 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
150 160 170 180 190 200

Grid

Figure 8.1. Ice water content and mean volume diameter as retrieved by the all-grid (ag),
single-grid (sg) and default (B&F) assumption retrievals.

The all-grid optimal retrieval produced reasonable cloud-wide values for particle

nonsphericity and density. Forward modeling of the in situ data using these optimal all-

grid parameters produced an excellent match in the mean reflectivity for the cloud at the

aircraft flight level and an RMS of only 2.9, 2.1 and 2.1 dBZ at 13.4, 35.6, and 94.9 GHz.

However, the all-grid retrieval could not capture any trends in nonsphericity or density

across the cloud.
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The single-grid retrieval produced an excellent match of the F(x) to the

observations, including any maxima, minima, and trends. It accomplished this by

allowing the retrieved parameters to vary as necessary and the result is a volatile density

parameter across the flight track. The unphysical nature of this variance across the

horizontal structure of the cloud implied that the retrieval is using the density as a 'tuning

knob' to match the remote sensing observations at individual grid points. However, in the

cloud mean sense, the single-grid optimal parameters are close to the all-grid retrieved

optimal parameters. There is a negative bias in the single-grid F(x) at 94.9 GHz that

could indicate a problem with the in situ data such as undercounting at the lower sizes or

the discontinuity between the 2DC and 2DP number concentrations.

Finally, the use of the optimal density and aspect ratio as improved assumptions

in the forward model significantly improved the PSD retrieval in the cloud. The retrieved

gamma PSD very closely matched the in situ PSD except for the smallest particles where

the retrieved PSD indicated a higher number concentration. Since the optimally retrieved

density and aspect ratio were derived to best fit the forward-modeled in situ to the remote

sensing observations, it was no surprise that the PSD retrieval would improve, i.e., the

retrieved PSD would look more like the in situ. However, the level of improvement was

striking. The cloud probe data has been used to improve the PSD retrieval by improving

the assumptions in the forward model but the retrieved PSD also does not show the

undercounting of small particles that is characteristic of the 2D cloud probes in order to

retain agreement with the 94.9-GHz radar reflectivities.
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8.2 Vertical Profile PSD Retrieval

The clear sky case provides an excellent illustration of one of the strengths of the

optimal estimation methodology. The non-convergence of the original retrieval indicated

an inconsistency in one of the inputs: observations, input uncertainties, or forward model.

The physical consistency enforced through the radiative transfer model ensures that any

miscalibration across sensors or erroneous assumptions will result in failure of the

retrieval to converge to a solution. In a traditional retrieval that uses only a brightness

temperature (TB) differencing scheme, instead of simultaneously solving the radiative

transfer for each frequency, this type of miscalibration error may have gone unnoticed.

The first thing to notice in the ice cloud retrieval is the microphysical nature of

the cloud retrieved (Figures 7.2 and 7.3). The shape of the retrieved profile of ýt shows a

trend for p. to increase from the base towards the top. This trend is better defined in the

optimal retrieval. At the edges (base and top) of the cloud the observations naturally

provide less information about the cloud and the retrieval tends toward the a priori

values, ýi = -1.1. A more negative p. indicates a more super-exponential gamma

distribution such that the small particle tail of the distribution goes to increasing number

concentrations. Thus, a more negative p. in general indicates a greater concentration of

small particles. Also evident in Figures 7.2 and 7.3 is the trend towards greater N0* from

the base to the top of the cloud and the trend towards greater Dm from top to base. These

trends are consistent with particle growth processes where there would be more

numerous, smaller particles at the top of the cloud and fewer but larger particles at cloud

base.

65



Although the trends are evident in both the default and optimal retrieval profiles, they are

more distinct in the optimal retrieval. Other differences are evident between the default

and optimal retrieved profiles. The optimal retrieval shows more negative pL, larger Dm

and smaller No* than the default retrieval. These changes in the optimal model retrieval

are the result of improving the model assumptions to better match the in situ PSD in

chapter six. These differences in the PSD combined with the optimal assumptions of a

greater density for smaller particles and oblate spheroids of a smaller volume for the

same diameter produce a dramatically smaller IWC for the optimal retrieval. For the

representative grid point, the optimal retrieval produces an IWC smaller by over an order

of magnitude. The retrieved ice water path across the cloud is shown for both default and

optimal cases in Figure 8.2 and illustrates the differences in ice water across the cloud.

Retrieved Ice Water Path with Uncertainty
1 .0 0 0 1 1 1 1 1 I"l -. . . . .- 1 ' ' '- 1 1 1:

Ftt
0.100

0 *~ Def

AE opt

0.010 6(( 0

0.00 1

150 160 170 180 190 200
Grid

Figure 8.2. Retrieved ice water path for both default (Def) and optimal (Opt) cloud ice
retrievals with error bars describing the uncertainty around the retrieved
states.
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The error bars in Figure 8.2 give the reason the two retrievals can produce such

vastly different ice water contents/paths while still matching the observations. An error

propagation model was constructed to calculate the uncertainty in computed IWP from

the retrieved uncertainty (using the standard deviation as representative uncertainty) in

the PSD parameters. The retrieved IWP and respective retrieved uncertainty for both

default and optimal retrievals is shown and it is evident in the figure that the IWP

uncertainty is very large for the default retrieval and has been significantly reduced for

the optimal retrieval. Further inspection reveals that the default and optimal IWP PDFs

overlap and that, for the vast majority of grid points, the optimally retrieved mean IWP

falls within the default PDF. In other words, the characteristic (mean) retrieved state

(here IWP) for the improved retrieval falls within the relatively wide PDF of default-

retrieved states. However, the characteristic state for the default retrieved IWP does not

fall within the much narrower PDF of improved retrieval states.

The differences between the default and optimal cases can be examined in greater

detail by looking at a single-grid point retrieval. Tables 7.4 and 7.7 reveal that the two

retrievals produce the same results in state parameters governing the background

emission. But Tables 7.5 and 7.8 detail the differences evident in Figures 7.2 and 7.3.

There is a reduction in uncertainty in both the cy ýt and cy N0 * from the default retrieval to

the optimal retrieval. However, the uncertainty in Din, given by a Dm increases from

default to optimal retrieval. Examining the A-matrix values yields results consistent with

the changes in uncertainty. The optimal retrieval relies much more heavily on the

observations for both jt and No* than the default retrieval. This important result is due to

the optimization of the forward radiative transfer model in chapter six. The model
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improvement was based on best matching the forward modeling of the in situ PSD at all

three radar observation frequencies. Intrinsic to this procedure was ensuring physical

consistency across the suite of radar frequencies thus reducing the uncertainty in the

forward modeling of the PSD. This reduction in uncertainty is now evident in the ability

of the optimal retrieval to use the observations to determine /t and No* rather than default

to the a priori in situations where the default model could not match all three frequencies.

Also evident is the trend towards more reliance on the a priori than the observations at

the base and top of the cloud due to a lack of information when one or both of the APR-2

radars drop out.

The difference between the optimal and default retrievals is also evident in the

information content analysis. The X2 for both retrievals is effectively the same, indicating

that the fit of the forward modeled retrieved state, F(x) to the observations y is the same.

However, the reduction in retrieval uncertainty in the optimal retrieval is dramatically

reflected in the information content. The Shannon Information Content of the default

retrieval was 124 while for the optimal retrieval H = 211. This indicates that the optimal

retrieval is able to resolve 287 more retrieved states than the default retrieval. So, although

the two retrievals converge to answers that result in almost equivalent 'fits' to the

observations, the resultant retrieval uncertainty in the default retrieval is required to be

much larger to achieve this fit. The increased internal physical consistency in the forward

model provided by the optimal assumptions results in the observations mapping into a

smaller area in state space. The dominant contribution to the information content of the

retrieval comes from the N0 * parameter and secondarily from the Dn. This is a slight shift

from the default retrieval where the D,, showed more information content than in the
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optimal retrieval, consistent with the shift in retrieved uncertainty. Also consistent with

the retrieved uncertainty is the lack of information around the edges of the cloud where

one or more of the radars have no returns. In addition, the information content of the

emission state parameters is relatively low, especially the surface emission parameters

Tsf, and V~f-. This is consistent with the absence of lower frequency microwave

observations after the exclusion of the PSR data. It also shows that there is still some

information about those parameters remaining in the higher frequency MIR data.
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CHAPTER 9

CONCLUSIONS

The integration of radar observations over multiple frequencies with simultaneous

in situ cloud probe observations through the use of a radiative transfer model represents a

'physical validation' of the measurements and model. The radiative transfer model

enforces physical consistency between the observations. What these results indicate is

that common assumptions about uncertainties from both observations and model have a

major impact on the retrieval. The uncertainty due to the difference between 2DC and

2DP observed PSDs is shown to produce up to a 10 dBZ difference in F(x) at 94.9 GHz.

The model assumptions of spherical particles and a Brown and Francis size-density

relationship produce an RMS of 6, 8 and 12 dBZ at 13.4, 35.6 and 94.9 GHz when

compared to the observations.

Even with an abundance of data the single-level retrieval uncertainty remained

large but was now quantifiable through the optimal estimation method. A focus on

reducing uncertainty from noise in sensors through additional calibration and cross

calibration can help to reduce one of the sources of input uncertainty in the retrieval

process.
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For the ice cloud under study, the use of multiple complementary airborne remote

sensing and in situ observations through an optimal estimation framework was able to

determine an optimal ice size-density relationship of p(D) = 0.07* D-"' and oblate

spheroid aspect ratio of 0.53. The use of these improved model assumptions in the PSD

retrieval was able to fully describe the particle size distribution of the ice cloud at the

level of the in situ observations such that the agreement between modeled reflectivities

and observed reflectivities increased from +/- 6-12 dB to +/- 2-3 dB at all frequencies.

These improved model assumptions were then incorporated into the model for the

retrieval of a full vertical profile of hydrometeors.

For the vertical profile PSD retrieval, eleven passive microwave radiometer

channels were combined with observations from three different radar frequencies to

retrieve atmospheric profiles of an ice cloud. The different observations were integrated

with each other and solved simultaneously through a forward radiative transfer model.

The physical consistency enforced by this method identified a bias in one of the passive

microwave instruments through the non-convergence of the retrieval.

The retrieval allowed all three parameters of a normalized gamma PSD to vary

from level to level vertically through the cloud to gain information about the vertical

microphysical structure of the cloud. However, even with the final observation suite of

seven radiometer channels and three different radars, there was not enough information in

the observations to fully determine all three parameters of the PSD at every level in the

cloud. But, allowing all three PSD parameters to vary from level to level in the vertical

enabled the algorithm to retrieve vertical cloud microphysical structure. The retrieval

identified profiles of smaller, more numerous ice particles at the top of the cloud and
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fewer but larger particles at cloud base. These results are consistent with cloud particle

growth processes.

The effect of the model improvements from the single-level 'physical validation'

was measured by the diagnostics inherent in the optimal estimation method. The optimal

estimation diagnostics and information content analysis identified that, although both the

default and the improved assumption retrievals were able to closely match the

observations, the default retrieval was only able to do so with very large resultant

uncertainties. The improved assumption model showed a significant decrease in the

uncertainty and, consequently, a major increase in the information content of the

retrieval. The result was that the default assumption retrieval produced an ice water

content over an order of magnitude larger than the optimal retrieval. This difference was

reconciled through the observation that the default retrieved state had such large

uncertainty that the PDF of retrieved possible states was large enough to contain the

optimal assumption retrieved state. However, the optimal assumption retrieval had much

less uncertainty, such that the default-retrieved state was excluded from the improved

retrieval PDF of retrieved states. The optimal estimation retrieval methodology provides

an ideal framework for integrating multiple disparate observations to reduce or improve

the assumptions required in the satellite cloud and rain retrieval process and to produce a

quantitative uncertainty estimate while simultaneously diagnosing where future areas for

improvement lie.

Observations of ice clouds are highly uncertain, even with data from three radars

and seven high-frequency microwave radiometer channels. While the retrieval standard

deviation appears quite large, this retrieval is operating without many of the a priori
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assumptions made in operational algorithms. Operational retrievals must make those a

priori assumptions when they operate in an environment lacking prior knowledge of the

observed target and the breadth of data available in this study. But, the accuracy of the

retrieval is impacted by the accuracy of the a priori, as shown in this paper. In the single-

level validation retrieval, the in situ aircraft observations serve as an apriori source of

information to refine the physical model used in the ice cloud retrieval. In the vertical

profile PSD retrieval, the improved ice cloud model makes a significant impact on both

the retrieved PSD and the resultant uncertainty. Despite the large retrieval uncertainty,

this paper demonstrates that prior knowledge of the microphysics of the ice cloud (e.g.,

density and shape) is important for the accuracy of satellite retrievals. These sort of

physical studies appear very worthwhile to reduce both the uncertainty and bias from

future satellite missions such as CloudSat.
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APPENDIX A

JPL CORRECTION

Early retrievals showed a high bias in the F(x) relative to the observations,

especially at 35.6 GHz. Though the retrieval found an optimal solution state, the result

did not match all three frequencies. The optimal retrieved state consistently produced a

positive bias in the 35.6 GHz and to a lesser extent in the 13.4 GHz in an attempt to

match the 94.9 GHz given the supplied in situ data. When the retrieval was performed

without the 94.9-GHz data, it was able to successfully converge to a solution with almost

no bias in the APR-2 frequencies. In conversations with Dr. Simone Tanelli at the Jet

Propulsion Laboratory (the source of the APR-2 data), he reported a problem with

quantization in the APR-2 data at the lowest reflectivity values. These low reflectivities

were exactly the data used in the ice cloud retrieval. JPL applied a nonlinear corrective

factor to the APR-2 reflectivities and made available the corrected data. The effect of the

correction was to increase reflectivities in both the 13.4 and 35.6 GHz relative to the pre-

corrected data. This correction brought the observations more in line with what the

retrieval was producing. Now, when the retrieval was performed on the corrected data,

the solution state was impacted. Most importantly, the mean F(x) using the optimal

retrieval parameters now had a greater separation between the 13.4 and 35.6 F(x)
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reflectivities indicating a shift in the Rayleigh-Mie aspects of the particle size

distribution. Additionally, the RMS around the retrieval had been reduced. Note

especially that the mean F(x) at 94.9 GHz better matched the observations even though

the ACR data is unchanged. This was indicative of increased physical consistency

between the APR-2 and the ACR observations. This lack of physical consistency between

the instruments was exactly what was seen in the original retrieval. The physical

consistency enforced by the optimal estimation retrieval is one of the key benefits of the

technique, and can be used to identify possible biases between instruments.

Pre-correction (x=1.8, 0.56; X2 = 152):

Frequency Observations F(in situ) RMS
13.4 GHz 9.4 dBZ 8.4 dBZ 3.4 dBZ
35.6 GHz 4.7 dBZ 6.3 dBZ 2.8 dBZ
94.9 GHz 2.3 dBZ 1.3 dBZ 2.1 dBZ

Post-correction (x=1.6, 0.53; X2 = 109):

Frequency Observations F(in situ) RMS
13.4 GHz 11.9 dBZ 11.6 dBZ 2.9 dBZ
35.6 GHz 8.3 dBZ 8.4 dBZ 2.1 dBZ
94.9 GHz 2.3 dBZ 2.4 dBZ 2.1 dBZ
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